535/1 PHYSICS Paper 1 Thur 4th Feb. 2021

Uganda Certificate of Education TOPICAL REVISION QUESTIONS SET 4 OLEVEL PHYSICS

Paper 1

Topic: Moments & Equilibrium

NAME:

STREAM:

INSTRUCTIONS:

Answer all questions in this paper.

Mathematical tables, side rulers and silent non-programmable calculators may be used.

These values of physical quantities may be useful to you.

Acceleration due to gravity	=	10 m s^{-2}
Specific heat capacity of water	=	$4200 \text{ J kg}^{-1} \text{ K}^{-1}$

SECTION A: (30 Marks)

Answer **all** questions in this section.

Question 1:

A spanner of length 20 cm is used to tighten a nut. If a force of 50 N is applied at right angles to the end of the spanner, find the moment of the applied force.

Question 2:

Figure 5 shows a metre rule balancing on a knife edge when a mass, *M*, is hanged at one end.

Which one of the following is true if the mass, *M*, is moved towards the knife edge?

- A. The metre rule turns in anti-clockwise direction.
- B. The centre of gravity changes to another position.
- C. The metre rule turns in a clockwise direction.

D. The metre rule remains balancing.

Question 3:

Figure 4 shows a uniform metre rule of weight W acted upon by forces R_1 and R_2 , and pivoted at the 25 cm mark.

Identify forces which produce clockwise moments.

- A. R_1 and R_2 .
- B. R_1 and W.
- C. R_2 and W.
- D. R_1 , R_2 and W.

Question 4:

Figure 2 shows a rigid body pivoted at *S*.

Which of the forces **O**, **P**, **Q** and **R** gives the body an anti-clockwise moment?

A. *R*B. *Q*C. *P*D. *O*

Question 5:

Which of the following increase the stability of a body?

- (i). Raising its centre of gravity.
- (ii). Lowering its centre of gravity.
- (iii). Making its base narrow.
- (iv). Making its base wide.
 - A. (i) and (iv) only.
 - B. (ii) and (iv) only.
 - C. (i) and (iii) only.
 - D. (ii) and (iii) only.

Question 6:

Figure 8 shows a beam balanced horizontally by weights M_1 and M_2 .

If M_2 is increased and M_1 remains the same, what adjustments should be made to balance the beam horizontally?

- A. *M*₁ should be moved towards *O*.
- B. M_2 should be moved away from O.
- C. Point **O** should be moved towards M_1 .
- D. M_1 should be moved away from O.

Question 7:

A body is in neutral equilibrium if

- (i). it returns to its original position after a small displacement.
- (ii). its centre of gravity remains at the same height when slightly displaced.
- (iii). it overturns when slightly displaced.
 - A. (i) only.
 - B. (ii) only.
 - C. (i) and (ii).
 - D. (ii) and (iii).

Question 8:

Forces of 40 N, 20 N and 50 N are applied on a metre rule supported on a knife edge as shown in figure 4.

The metre rule will

- A. balance.
- B. oscillate.
- C. turn in a clockwise direction.
- D. turn in anti clockwise direction.

Question 9:

A light beam AB is in equilibrium when forces of 2 N, 2 N and P act on it as shown in figure 4. Find the magnitude of P.

- A. 5 NB. 4 N
- C. 2 N
- D. 1 N

Question 10:

Figure 5 shows a uniform beam in equilibrium when a force **R** acts on it at one end. Find the weight, **W** of the beam.

A.	X	C. <i>l</i>
	Rl	\overline{Rx}
B.	Rl	D. Rx
	\overline{x}	\overline{l}

Question 11:

A load of 500 N is placed at 2 m from a pivot of a seesaw. At what distance from the pivot should a weight of 250 N be placed to balance the see saw?

- A. 0.5 m
- B. 1.0 m
- C. 2.0 m
- D. 4.0 m

Question 12:

The diagram in figure 1 shows a uniform half-meter rule suspended at point C.

B.	0.025 kg
C.	0.100 kg
D.	0.125 kg

Question 13:

A uniform wooden beam of weight W is pivoted at a distance $\frac{1}{5}$ of its length from the end A and kept in equilibrium by applying forces of 4 N and 5 N as shown in figure 3. The force exerted by the pivot on the beam is

- A. 16
- B. 15
- C. 10
- D. 8

Question 14:

The number of complete oscillations made per second is referred to as A. periodic time

- B. amplitude
- C. wave length
- D. frequency

Question 15:

A uniform rod 100 cm long pivoted at the 90 cm mark, balances horizontally when a mass of 200 g is suspended at the 100 cm mark as shown in figure 2. The mass of the rod is

- A. 40 g
- B. 50 g
- C. 400 g
- D. 800 g

Question 16:

Which of the following statements are true about two equal forces F acting on a bar of length *l*, shown in figure 2?

- (i). The resultant force on the bar is zero.
- (ii). The forces cause a rotational effect.
- (iii). The forces act in opposite directions.
- (iv). The forces produce different turning effects.
 - A. (i) only
 - B. (i) and (ii) only.
 - C. (i), (ii) and (iii) only.
 - D. (i), (ii) and (iv) only.

Question 17:

Figure 5 shows a uniform metre rule of mass 0.1 kg pivoted at the 80 cm mark. It balances horizontally when a mass P is hang at the 95 cm mark. Find the value of P.

Question 18:

A uniform metre-rule is pivoted at its centre as shown in figure 2.

- B. 33.3 N
- C. 50 N
- D. 100 N

Question 19:

The shaft in an engine is subjected to two parallel but opposite forces of 500 N each as shown in figure 3.

The rotation is best stopped by applying

A. two forces of 500 N acting at right angles to each other.

- B. two parallel but opposite forces of 500 N.
- C. a single force of 100 N.
- D. a single force of 250 N.

Question 20:

The time period of a simple pendulum

- A. decreases as the length of the pendulum decreases.
- B. increases as the mass of the pendulum bob decreases.
- C. increases as the mass of the pendulum bob increases.
- D. decreases as the length of the pendulum increases.

Question 21:

Find the weight W, of a uniform metre rule if a force of 60 N at one end balances it as shown in figure 6.

A.	24	Ν

B. 40 N

- C. 90 N
- D. 100 N

Question 22:

If the system in figure 3 is in equilibrium, find the value of X

Question 23:

The stability of a bus is reduced when a heavy load is placed on its root rack because

- A. the total weight is increased
- B. the pressure upon the tyres is increased
- C. the maximum speed is reduced
- D. the centre of gravity is raised

Question 24:

Two weights are balanced on a rule of negligible mass as shown figure 9. What is the value of W?

- A. 2.5 N
- B. 10 N
- C. 30 N

D. 40 N

Question 25:

A uniform metre rule pivoted at the 25 cm mark balances when a mass of 0.15 kg is hung at the 8 cm mark. Calculate the mass of the metre rule

- A. 0.020 kg
- B. 0.048 kg
- C. 0.102 kg
- D. 1.020 kg

Question 26:

A uniform metre rule of weight 2 N is pivoted at the 40 cm mark. Find the value of the force, P required to keep the metre rule in equilibrium if a force of 4 N acts at the end of the metre rule as in the diagram above

- A. 2.5 N
- B. 5.5 N
- C. 6 N
- D. 6.5 N

Question 27:

An object in unstable equilibrium continues to fall when slightly displaced because

- 1. centre of gravity is lowered
- 2. centre of gravity is raised
- 3. potential energy is reduced
- 4. potential energy is increased
- A. 1, 2, 3 only are correct
- B. 1,3 only are correct
- C. 2,4 only are correct

D. 4 only is correct

Question 28:

A bus carrying a heavy load on its rack is more unstable when moving because

- A. its centre of gravity is raised
- B. the friction on the ground increases
- C. its total weight is increased
- D. the pressure on the tyres is increased

Ouestion 29:

When a body in stable equilibrium is tilted slightly

- the position of its centre of gravity is lowered A.
- B. the position of its centre of gravity is raised
- C. the position of its centre of gravity doesn't change
- D. it topples over

Question 30:

A uniform metre rule is suspended with a string at the 20 cm mark and is kept horizontal by a mass of 120 g from one end as shown above. Find the mass of the metre rule

- A. 80 g
- B. 30 g
- C. 24 g
- D. 120 g

SECTION B: (51 Marks)

Answer all questions in this section.

Ques (a).	stion 31: Explain why it is dangerous to overload vehicles with goods on the roof-rack.	e [1]
 (b).	A uniform metre rule of weight 0.8 N is loaded by suspending 1 N weight 10 cm from 0.0 cm mark. (i). Sketch the diagram for the set-up.	 [1]
······	(ii). Determine where the loaded metre rule will balance.	 [2]
Ques (a).	stion 32: State the principle of moments .	 [1]
 (b).	A hand cart of length 1.5 m, has the centre of gravity at length 0.5 from the wheel when loaded with 50 kg as shown in fiugre 10.	 m

Figure 7 shows a uniform rod of length 4.0 m pivoted at 1.0 m from one end. If the weight of the rod is 120 N, find the force F which keeps the rod horizontal. [2]

Question 34:

A uniform meter ruler is pivoted at the 40 cm mark as shown in the figure 9. The meter ruler is the equilibrium under its weight W and a 20 N force acting at the 10 cm mark. Calculate W. [2]

.....

Question 35:

(a).	State the principle of moments.	[1]
		•

The beam remains in equilibrium when force R and S act on it. If R is 5 N, find the: (i). value of S. [2]

(ii). reaction at the pivot. [1]

Question 37:

(a).	Define Moment of a force.	[1]
(b).	A uniform metre-rule is balanced at the 30-cm mark when a load o 0.8 N is hang at the zero-mark. Find the weight of the metre-rule.	f [3]

Question 38:

(a).	(i).	State the principle of moments.	[1]
	(ii).	State the conditions for a body to be in equilibrium.	[2]
(b).	Wha	t is meant by centre of gravity ?	[1]

Question 39:

.....

.....

Question 40:

(a).	Define moment of a force .	[1]
(b).	A uniform metre rule is balanced at the 30 cm mark when a load 0.80 N is hung at the 0 mark. Find the mass of the metre rule.	of [3]

Question 41:

A non-uniform metal bar which is 4.0 cm long has its centre of gravity 1.0 m from the heavy end. The bar is balanced when it is pivoted from the middle and a weight of 750 N is suspended from the light end.

Question 42:

A uniform metre rule with a 200 g mass suspended at the zero mark is balanced on a knife when pivoted at the 18.0 cm mark as shown below.

.....

END

Available at any of the following outlets: Kampala (Nansana-Masitoowa); Iganga; Namutumba; Mbale, Badaka; Bukedea; Lira, Mbarara; Masindi.